Ученые ВШЭ оптимизировали обучение генеративных потоковых нейросетей
Исследователи факультета компьютерных наук НИУ ВШЭ улучшили метод обучения генеративных потоковых нейросетей для работы с неструктурированными задачами. Это поможет искать новые лекарства эффективнее. Результаты работы были представлены на одной из ведущих конференций по машинному обучению — ICLR 2025. Текст работы доступен в репозитории Arxiv.org.
Генеративные потоковые сети (GFlowNets) — особый тип алгоритмов машинного обучения, который строит сложные объекты шаг за шагом. Ученые применяют их для поиска белков, лекарств и оптимизации транспортных систем.
Чтобы GFlowNets находили такие сложные структуры, исследователи объясняют им свойства объекта, который они хотели бы получить. Чем ближе решение нейросети по свойствам к заданным, тем более высокую награду она получит. Сеть стремится решить задачу так, чтобы получить максимальный приз. На данные она не обращает внимание, только на вознаграждение. Оно вычисляется через уравнение, которое называют функцией вознаграждения.
Процесс поиска сложного объекта можно сравнить со сборкой модели из блоков Lego. Вы последовательно добавляете детали, пока не получится что-то цельное, при этом у каждого объекта есть своя заданная ценность. Собранная модель растения, например, может оцениваться дороже модели животного. В отличие от других методов машинного обучения, которые будут стремиться любой ценой получить растение, GFlowNets будут собирать много разных объектов, но растения чаще, чем животных: так выгоднее.
При таком типе поиска GFlowNets используют две вероятностные модели, которые работают в паре: прямую и обратную. Прямая модель — прораб-строитель, который решает, куда идти дальше, и предсказывает вероятность последующего состояния, а обратная модель — эксперт-разборщик, который определяет, каким был предыдущий шаг. Важно, чтобы эти потоки были сбалансированы, но сделать это очень сложно. Во-первых, требуются большие вычислительные мощности, во-вторых, обратная модель не обладает достаточной гибкостью: обычно исследователи запрещают ей меняться в процессе поиска и подсматривать за действиями прямой.
Ученые НИУ ВШЭ нашли способ оптимизировать обратную модель с помощью метода Trajectory Likelihood Maximization (TLM). Они доработали алгоритмы обратной модели таким образом, чтобы она могла постоянно сверяться с действиями прямой модели.
Тимофей Грицаев
«Мы сделали так, что поиск оптимального решения стал похож на переговоры, в которых обе стороны готовы менять свою позицию. В задачах с большой степенью неизвестности обратная модель — лишь вспомогательный инструмент, улучшающий результаты прямой модели. Мы искали способ сделать работу обратной модели гибкой и наконец смогли его получить», — поясняет один из авторов работы, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ Тимофей Грицаев.
После внедрения TLM функция вознаграждения, описывающая успешность решения задачи для обратной модели, стала сложнее. Однако, несмотря на увеличение сложности, вся система поиска стала быстрее и эффективнее.
Никита Морозов
«Наш метод заметно быстрее просматривает пространство возможных решений и находит больше качественных вариантов. Этот подход в целом сближает генеративные модели с методами обучения с подкреплением», — говорит Никита Морозов, младший научный сотрудник Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ.
Авторы исследования уверены, что их работа поможет специалистам, применяющим GFlowNets в различных областях, таких как поиск новых лекарственных соединений, разработка материалов с заданными свойствами, а также тонкая настройка крупных языковых моделей. Благодаря способности таких сетей эффективно исследовать огромное пространство решений и быстро находить наиболее оптимальные варианты можно заметно сократить нагрузку на вычислительные мощности.
Грицаев Тимофей Григорьевич
Вам также может быть интересно:
Вышка стала соорганизатором Международного диктанта по финансовой безопасности
С 1 по 30 сентября пройдет Международный диктант по финансовой безопасности. Масштабный онлайн-проект разработан с целью повышения осведомленности людей разного возраста о проблемах в сфере экономической стабильности. Тема этого года — «Новые технологии на страже финансовой безопасности: от личной защиты до суверенитета государства». В новом сезоне НИУ ВШЭ вошел в состав организаторов.
Эпоха ИИ: университеты и бигтехи обсудили трансформацию системы образования
В рамках круглого стола, организованного «Яндекс Образованием», эксперты из ведущих университетов и технологических компаний обсудили будущее системы образования и подготовки IT-специалистов в условиях развития технологий искусственного интеллекта. Высшую школу экономики представляла проректор университета Елена Одоевская.
Ученый в цифровую эпоху: как определить свой профессиональный путь в новом мире
Центр научной интеграции НИУ ВШЭ запускает программу «Современный ученый: инструменты развития научной карьеры», ориентированную на развитие профессиональных компетенций молодых исследователей. В течение 6 недель слушатели в синхронном онлайн-формате изучат 5 тематических блоков. Обучение начнется 22 сентября. На программу могут поступить все желающие, имеющие или получающие высшее или среднее специальное образование.
Ученые ВШЭ выяснили, почему люди доверяют науке
Исследователи ИСИЭЗ НИУ ВШЭ проанализировали степень доверия научному знанию в российском обществе и выявили факторы, которые влияют на восприятие. Оказалось, что доверие к науке больше зависит от повседневного опыта, социальных ожиданий и представлений о пользе, а не от объективных знаний. Статья опубликована в журнале «Мир России».
НИУ ВШЭ и Центр им. Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве
Высшая школа экономики и Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве. Подписи под документом поставили ректор НИУ ВШЭ Никита Анисимов и генеральный директор центра Николай Грачев.
Вышка доверит ИИ рутинную работу по созданию программ ДПО
НИУ ВШЭ совместно с EdTech-компанией CDO Global запускает AI-конструкторы для оптимизации разработки курсов дополнительного профессионального образования (ДПО). Новый сервис позволит автоматизировать подготовку учебных материалов и оценочных средств, значительно сократив время и ресурсы, затрачиваемые преподавателями и методистами.
На портале Вышки доступны обновленные «Цифры и факты» и дашборды
Дирекция по аналитике и управлению данными совместно с отделом визуальных коммуникаций разработали новую страницу «Цифры и факты о НИУ ВШЭ» на портале Вышки. Также всем сотрудникам университета доступен дашборд с показателями обновленной программы «Приоритет-2030».
Исследователи изучили, как в малых российских университетах заботятся о студентах
Исследователи из Института образования НИУ ВШЭ провели социологическое исследование в четырех малых неселективных университетах и на основе 135 интервью показали, что в таких вузах забота о студентах имеет двойственную природу. Она объединяет искреннюю помощь с постоянным надзором, напоминая родительскую опеку. Это первое детальное описание того, как формальные и неформальные практики заботы переплетаются в постсоветском образовательном контексте. Исследование опубликовано в British Journal of Sociology of Education.
На Международной летней школе в КНР Вышка поделилась опытом изучения городских стратегий
На фоне усиления глобальной геополитической и технологической конкуренции ведущие китайские вузы Чжэцзянский университет международных исследований и Пекинский университет организовали совместную Международную летнюю школу. Центральной ее темой стало изучение глобальных региональных и городских стратегий развития. Факультет городского и регионального развития НИУ ВШЭ принял участие в работе школы.
ВШЭ и Московский аналитический центр объединят усилия в сфере ИИ
НИУ ВШЭ подписал соглашение о сотрудничестве с ГБУ «Московский аналитический центр». Документ закрепил намерение сторон развивать совместные исследования и внедрять технологии искусственного интеллекта в управление городским хозяйством.