Scientists Develop Effective Microlasers as Small as a Speck of Dust
Researchers at HSE University–St Petersburg have discovered a way to create effective microlasers with diameters as small as 5 to 8 micrometres. They operate at room temperature, require no cooling, and can be integrated into microchips. The scientists relied on the whispering gallery effect to trap light and used buffer layers to reduce energy leakage and stress. This approach holds promise for integrating lasers into microchips, sensors, and quantum technologies. The study has been published in Technical Physics Letters.
The devices around us are becoming increasingly compact without sacrificing functionality. Smartphones now handle tasks that once required a computer, and small cameras can capture images with quality approaching that of professional equipment. Miniaturisation has also extended to lasers—sources of directed light that are embedded in optical chips, sensors, medical devices, and communication systems.
However, shrinking a laser while preserving its optical properties, efficiency, and reliability remains a significant challenge. Developing a laser measuring 5–8 micrometres—approximately the diameter of a red blood cell—requires complex calculations, and its fabrication demands high precision. The main challenge lies in the design of the laser itself. Unlike conventional light sources, lasers amplify radiation within a resonator—a structure where light is repeatedly reflected and amplified. The more compact the laser, the harder it is to trap the light inside so that it undergoes continuous reflection and amplification without losing energy, which is essential for stable operation.
Another challenge is the presence of defects in the material. Lasers rely on crystals that can amplify light, but microscopic defects often form during their growth, reducing the efficiency of light generation. To minimise these irregularities, scientists carefully select synthesis conditions and simulate the properties of crystals under various scenarios in advance. However, solving one problem often gives rise to others, turning laser development into a continual search for balance.
HSE scientists have developed microlasers with diameters as small as 5 to 8 micrometres that operate at room temperature. The researchers used a crystal structure composed of indium, gallium, nitrogen, and aluminium compounds grown on a silicon substrate. To trap light in a tiny space, the scientists relied on the whispering gallery effect.
Eduard Moiseev
'This phenomenon is well-known in acoustics: in some churches and cathedrals, you can whisper words against one wall, and the sound will be clearly heard on the opposite wall—even though, under normal conditions, the sound would not travel that far. A similar effect enables light to be repeatedly reflected inside the disk-shaped microlaser, minimising energy loss,' explains Eduard Moiseev, Senior Research Fellow at the International Laboratory of Quantum Optoelectronics, HSE University–St Petersburg.
However, even under these conditions, light waves can partially escape into the substrate and be lost. To prevent this, the researchers added a stepped buffer layer, which compensates for mechanical stresses between the silicon and nitride layers and reduces radiation leakage, enabling the laser to operate stably even at such small sizes.

Natalia Kryzhanovskaya
'Our microlasers operate stably at room temperature without the need for cooling systems, making them convenient for real-world applications. In the future, such devices will enable the creation of more compact and energy-efficient optoelectronic technologies,' explains Natalia Kryzhanovskaya, Head of the International Laboratory of Quantum Optoelectronics at HSE University–St Petersburg.
The paper has been prepared as part of a project implemented within the framework of the International Academic Cooperation competition at HSE University.
See also:
Internal Clock: How Heart Rate and Emotions Shape Our Perception of Time
Our perception of time depends on heart rate—this is the conclusion reached by neuroscientists at HSE University. In their experiment, volunteers watched short videos designed to evoke specific emotions and estimated each video's duration, while researchers recorded their heart activity using ECG. The study found that the slower a participant's heart rate, the shorter they perceived the video to be—especially when watching unpleasant content. The study has been published in Frontiers in Psychology.
Scientists Identify Personality Traits That Help Schoolchildren Succeed Academically
Economists from HSE University and the Southern Federal University have found that personality traits such as conscientiousness and open-mindedness help schoolchildren improve their academic performance. The study, conducted across seven countries, was the first large-scale international analysis of the impact of character traits on the academic achievement of 10 and 15-year-olds. The findings have been published in the International Journal of Educational Research.
Intellectual Capital in the Face of Shocks: Russia and Iran Explore Internationalisation
In today's issue of Schola, Mariya Molodchik, Senior Research Fellow at the International Laboratory of Intangible-Driven Economy and Professor at the School of Economics and Finance at HSE University’s Campus in Perm, discusses a joint project with Iran University of Science and Technology, titled 'Internationalization of Companies from Developing Countries: The Role of Intellectual Resources in Response to Exogenous Shocks.'
HSE Researchers Introduce Novel Symmetry-Aware Neural Network Architecture
Researchers at the HSE Laboratory for Geometric Algebra and Applications have developed a new neural network architecture that can accelerate and streamline data analysis in physics, biology, and engineering. The scientists presented their solution on July 16 in Vancouver at ICML 2025, one of the world's leading conferences on machine learning. Both the paper and the source code are publicly available.
Students from HSE and Other Universities Carry Out Research Expedition at New Chersonesos
As part of the Rediscovering Russia student expedition programme, HSE University organised a research trip under the framework of the School for Young Humanities Scholars to the New Chersonesos museum and church complex in Sevastopol. The results of this expedition will form the basis for proposals on educational projects aimed at shaping young people’s historical memory of the role of Chersonesos, Crimea, and the Byzantine legacy in the history of Russian culture and statehood.
HSE Researchers Determine Frequency of Genetic Mutations in People with Pulmonary Hypertension
For the first time in Russia, a team of scientists and clinicians has conducted a large-scale genetic study of patients with pulmonary arterial hypertension. The team, which included researchers from the International Laboratory of Bioinformatics at the HSE Faculty of Computer Science, analysed the genomes of over a hundred patients and found that approximately one in ten carried pathogenic mutations in the BMPR2 gene, which is responsible for vascular growth. Three of these mutations were described for the first time. The study has been published in Respiratory Research.
First Caucasus School on Experimental Research and Cognitive Sciences Takes Places in Adygea
On September 17–20, 2025, the First Caucasus School on Experimental Research and Cognitive Sciences took place at the Gornaya Legenda venue of Adyghe State University (ASU). The event was organised by the ASU Experimental Linguistics Laboratory, the HSE Centre for Language and Brain, and the HSE Centre for Sociocultural and Ethnolinguistic Studies. The school brought together over 50 participants—students, doctoral candidates, and early-career researchers from across Russia, along with lecturers and speakers from France, Serbia, China, Turkey, Kazakhstan, and Uzbekistan.
HSE Scientists Reveal How Disrupted Brain Connectivity Affects Cognitive and Social Behaviour in Children with Autism
An international team of scientists, including researchers from the HSE Centre for Language and Brain, has for the first time studied the connectivity between the brain's sensorimotor and cognitive control networks in children with autism. Using fMRI data, the researchers found that connections within the cognitive control network (responsible for attention and inhibitory control) are weakened, while connections between this network and the sensorimotor network (responsible for movement and sensory processing) are, by contrast, excessively strong. These features manifest as difficulties in social interaction and behavioural regulation in children. The study has been published in Brain Imaging and Behavior.
Similar Comprehension, Different Reading: How Native Language Affects Reading in English as a Second Language
Researchers from the MECO international project, including experts from the HSE Centre for Language and Brain, have developed a tool for analysing data on English text reading by native speakers of more than 19 languages. In a large-scale experiment involving over 1,200 people, researchers recorded participants’ eye movements as they silently read the same English texts and then assessed their level of comprehension. The results showed that even when comprehension levels were the same, the reading process—such as gaze fixations, rereading, and word skipping—varied depending on the reader's native language and their English proficiency. The study has been published in Studies in Second Language Acquisition.
‘The Future Is Not Predetermined—We Shape It with the Decisions We Make Today’
The strategic technological project ‘National Centre of Science, Technology, and Socio-Economic Foresight’ at HSE University spans horizons of 10 to 30 years and involves developing new methodologies of scenario analysis. It brings together researchers from different fields and helps to form a holistic vision of the future. The aim of the project is not only to produce forecasts but also to generate practical recommendations for government and business. Anastasia Likhacheva, Dean of the HSE Faculty of World Economy and International Affairs, explains why it is important to learn to ask the right questions about the future.